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Abstract

The analysis of the instability phenomena that widely affect the behavior of laminated rubber bearings is examined.
A Koiter perturbation strategy is followed. On the basis of two different constitutive relations, two different one-
dimensional nonlinear models are used: the first one, linear-elastic, derived from the classical beam theory; the second
one, nonlinear-hyperelastic, consistent with the framework of three-dimensional finite elasticity. For the two models,
emphasis is placed on the influence of the post-buckling behavior in terms of its load-carrying capacity.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The behavior and design of multilayered elastomeric bearings, widely used for bridges and seismic base-
isolation of structures, are heavily affected by buckling instability phenomena in axial load compression
conditions. In fact, despite their geometric form, this effect is connected with the low ratio of transversal
and axial stiffness of these structural elements.

The development of an accurate mechanical model of such instability phenomena needs the setting of
two fundamental points: the strategy of analysis and the kinematic-constitutive model of the structural
elements. With respect to the strategy of analysis, the attention in literature has so far been focused on the
determination of the buckling critical load in axial compression, considered a good estimation of the load-
carrying capacity of the element, whereas no attention has been paid to the study of the post-critical
behavior, implicitly considered as having no influence on the structural response.

Nevertheless, no rational motivation has been put forward to support these convictions. This could
only be obtained on the basis of an effective knowledge of the post-critical behavior of the structural
element taken into consideration: it is the author’s opinion, in fact, that only that knowledge could give a
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comprehensive view of the structural instability phenomena. Therefore, the study of the critical and post-
critical behavior of layered elastomeric bearings is the aim of the present paper. To this end, the paper
follows the guidelines defined in Salerno and Lanzo (1997) and Salerno (1992), using a Koiter pertur-
bation strategy (Koiter, 1945; Budiansky, 1974; Casciaro et al., 1991, 1992) that synthetically models the
critical and post-critical structural behavior by means of some simple scalar coefficients, and at the same
time allows us to take into account the geometric and load imperfection sensitivity in the same direct and
simple manner.

With respect to the structural model, prevalent references are made in the literature to one-dimensional
beams with shear deformability: this model gives a synthetic representation and is motivated by the con-
structive features of laminated elastomeric bearings. In particular, the beam constitutive model most widely
used is derived from the classical linear elasticity. Exceptions to this are the papers of Marzano and
coworkers (Marzano, 1994; D’Ambrosio et al., 1995; Castellano, 1995) where a beam constitutive model is
proposed, derived from Blatz and Ko’s three-dimensional nonlinear hyperelastic relationship (Blatz and
Ko, 1962), that more accurately represents the behavior of the rubber.

The framework becomes confused when we review the kinematical beam models suggested for the
buckling analysis of the structural elements which are the object of the present paper. In fact, together with
nonlinear beam models derived from technical theory (Engesser, 1891; Haringx, 1948; Timoshenko and
Gere, 1961), i.e. enriching the linear beam model with ‘ad hoc’ nonlinear terms based on diversely moti-
vated assumptions, are also present beam models rationally derived from an exact geometric representation
(Reissner, 1972; Antman, 1977, 1995). The reader, discouraged by this picture, can consider the points
listed here (see Pignataro et al., 1982; Salerno and Lanzo, 1997; Reissner, 1982):

(1) A nonlinear analysis of the problem, accurate up to any asymptotic order, requires a kinematical non-
linear model accurate up to the same order: only kinematical relations, geometrically exact and thus
rationally well-founded, meet such condition.

(2) In the critical analysis a low order of accuracy is required. Within the limits of critical analysis, it can be
demonstrated that some of the technical beam models suggested are rationally well-founded, since they
are derivable up to the requested order from geometrically exact relations. However, the practicability
of such models cannot be transferred to different contexts, for example the post-critical behavior anal-
ysis, that require a higher level of accuracy.

(3) Several strain measures, all rationally well founded, can be used. At the kinematical level, no single
measurement is better or worse than another. The comparison is only possible at other levels, i.e. on
their ability to give an effective and rationally exact representation of constitutive relations.

With the aim of studying the critical and post-critical behavior of layered elastomeric bearings, the
present work considers two different beam models, both based on the Cosserat kinematical relation,
nonlinear and geometrically exact, suggested by Antman (1977, 1995). The first model, widely used in
Salerno and Lanzo (1997), Salerno (1992), Pignataro et al. (1982) and Lanzo (1994)), refers to the classical
linear elastic constitutive relationship. Instead, the second model refers to a more complex nonlinear elastic
constitutive relationship consistent with the framework of three-dimensional finite elasticity. The first beam
model is very similar to the one used by Haringx (1948), but enriched with the axial deformability, in
addition to the shear and flexural deformability; the second beam model corresponds exactly to the one
suggested by Marzano and coworkers (Marzano, 1994; D’Ambrosio et al., 1995; Castellano, 1995), how-
ever, whereas these cited papers are restricted to analysis of the critical behavior, the present paper aims to
cover the post-critical range as well.

With reference to the linear-elastic model, the work aims to demonstrate that, for the usual design of
bearings, the relative post-critical behavior does not affect the goal of determining its load-carrying
capability: this justifies, for the linear-elastic model, referring to the critical analysis only. Such conclusions
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cannot, however, be extended just then stand to the nonlinear-elastic model. The picture determined by the
post-critical behavior of the nonlinear-elastic model is, in fact, more diversified. It’s influence on the
determination of the load-carrying capability of the structural element is strongly related to the choice of its
constitutive parameters and, therefore, to the techniques of homogeneization used for bringing back the
real geometry of bearings to the homogeneous one of the examined models.

The work is organized as follows. After a brief description of Koiter’s perturbation strategy using the
formalism suggested by Budiansky (1974), the Cosserat beam model is synthetically described in its
kinematic and static aspects. Having completed the constitutive aspects of the linear-elastic model, its
critical and post-critical behavior is analyzed, obtaining in closed form the relative coefficients. Following
this, the same treatment is extended to the nonlinear-elastic model, where the critical load is obtained by
means of a numerical solution of a nonlinear algebraic equation, and the relative post-critical coefficients
are obtained in closed form. Finally, after reporting the experimental numerical results of the two model
behavior, there are some considerations and comments.

2. The Koiter strategy of analysis

For structures subjected to conservative loads linearly increasing according to a A parameter (p[4] = Ap),
characterized by an energy of deformation ®[u] (where u represents the displacement field compatible with
the internal and external kinematical constraints of the structure) and a load potential p[A]u linear in u, the
equilibrium configurations are characterized by the stationariety of the total potential energy, expressed by
the following virtual work equation

II'8u = &'8u — pdu  Ydu (1)

where a prime indicates Fréchet’s derivative with respect to the field u.

For varying loads, the solutions of the problem (1) can be represented by (u, A) values: such “points”
describe in a suitable space one or more ‘“‘curves’ called equilibrium paths of the structure. We assume that
the natural equilibrium path, that is the path that the structure follows starting from its natural rest
configuration, is known and that it is regular in the load parameter u'[1]. We call it fundamental path.

The intersection of u'[4] with a second equilibrium path defines a phenomenon of bifurcation. We call
perfect the structures that exhibit bifurcation phenomena along their natural equilibrium path. The
bifurcation configuration (uy, 4) is defined by the critical condition

Dropdu =0 Vou (2)

that is the singularity tangent stiffness operator in the direction &, (suitably normalized ||ip|| = 1) called
critical or primary buckling mode.

Starting from the bifurcation point, the branching path, also called post-critical, is reconstructed by
means of a Koiter asymptotic approach (Koiter, 1945) on the basis of the following representation with
reference to a suitable curvilinear abscissa & (also see Budiansky, 1974; Casciaro et al., 1991, 1992)

J4E] = 2y + A + %MZ (3a)

wE) = W] + i+ 5 (3b)

where iy, is the secondary buckling mode and (/y, 4,) represent, respectively, the slope and curvature (in the
bifurcation point) of the curve of the post-critical path.
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The scalar parameter A, depends on the bifurcation configuration, the buckling mode and the tangent to
the fundamental path & = Zu'[4], being defined by the ratio

3
By = —% % )
For particular symmetry conditions of the problem, such as in the present case
Iy =0
With this condition, the secondary buckling mode is defined by the solution of the problem
DYindu + O ipdu =0 Vou (5)

constrained by a suitable orthogonality condition ((iy, ) = 0); at the same time, the curvature scalar
parameter A, is evaluated by means of the simple ratio of scalar quantities

. (DW .4 _ 3(15//"2
Jp = _%Mzbvb (6)
30, uvy,

It can be shown that the choice of the abscissa & that describes the post-critical path defines both the
normalization condition of the primary buckling mode and its orthogonality condition with the secondary

mode
([[on]] = (@b, 06) = 1) (B, ib) = 0)

It can also be shown that, in presence of load or geometric imperfections that alter the ideal scheme of the
perfect structure, the relative equilibrium path is reconstructed with sufficient accuracy by preserving the
kinematic representation (3b) but opportunely redefining the A-¢ relationship according to

B
¢

where the effects of the imperfections are taken into account in a simple way through the scalar coefficient u
that, for the imperfections of load p, is evaluated by

) . 1.
A+ Ay + A&+ Eﬂvbfz (7)

PlAoy
- (D[//]A %) (8)
b Ul

3. The Cosserat beam model
3.1. Kinematic relations

We refer to a Cosserat planar beam model, of generic section and length /, whose generic deformed
configuration (see Fig. 1)

x' =5+ uls] + zsin 0]s]
V=y ©)
Z = w[s] + zcos 0]s]

is defined by the position of the line of centroids in the plane (x,z)

Pols] = (s + uls])i + wls]k
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Fig. 1. Kinematics.

and by the rigid rotation 0[s] of the cross-section, with reference to an initial configuration with rectilinear
axis and sections orthogonal to it. Therefore, the kinematics of the model is described in terms of the
displacement scalar fields (u[s], w[s], 0[s]).

The strain allowed by the kinematical model includes axial, shear and bending deformations. For finite
displacements, exact strain measures (&[s], y[s], [s]) are defined by the relations see (Salerno and Lanzo,
1997; Antman, 1977, 1995; Pignataro et al., 1982; Lanzo, 1994)

r,=(l+ea+yb, x=0;
where the unit vectors
a=cosfi—sinbk, b =sin0i+ cosOk

are, respectively, normal and tangent to the plane of the section in the deformed configuration. The
development of the above definitions bring to the following nonlinear strain—displacement relationship

l1+e=(14us)cosd —w,sinf (10a)
y=(1+u,)sinl +w;cos0 (10b)
1= O,S (1OC)

For the structural element under consideration, the kinematic boundary conditions are given instead by
(see Fig. 3)

for s = 0: u[0] = w]0] = 0[0] = 0| fors=1:0[l] =0 (11)

Fig. 2. Internal forces.
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Fig. 3. Beam model.

3.2. Static relations
Let (N, T, M) be force measures such that internal forces and couples of contact action are represented by
the vectors (see Fig. 2)
t=Na+Th, m=Mbxa
In the absence of loads along the axis of the beam, the internal equilibrium conditions
t,=0, my+r,xt=0

are expressed by the three scalar relationships

(+NcosO + Tsin0) =0 (12a)
(=Nsin0 + Tcos0) =0 (12b)
M, — (1 4+u,)(—Nsinf+ Tcosb) +w(Ncos+ Tsinh) =0 (12¢)

The equilibrium is completed by the natural boundary conditions. In particular, we consider for the
problem an axial compression load 4 applied on the top of the structural element (see Fig. 3), and then

N[l]=—2, T[=0 (13)

Duality can be seen among the characteristics of stress and strain introduced, in the sense that internal
virtual work assumes the following expression

/{N68+ Ty + Mdy}ds
!

where (8¢, 8y, 8y) are virtual variations of the beam strain parameters. It is therefore natural and rationally
correct to define the constitutive model for the beam through relationships in the quantities (N, 7', M) and
(&7, 1)

In what follows, we will take into account hyperelastic material relations, for which a strain energy ®[u]
exists, as a function only of the displacement fields of the structure, such that its first variation is identically
equal to the internal virtual work !

O[] du = /{N58 + T8y + M3y} ds (14)
1

! The complete expressions of the strain energy variations are reported in Appendix A, together with the expression of the strain
parameters variations needed in the following developments of the analysis.



A.D. Lanzo | International Journal of Solids and Structures 41 (2004) 5733-5757 5739

4. The linear-elastic beam model

The first model of multilayered elastomeric bearing is completed in its constitutive representation
making use of the classical linear-elastic relationship of the beam theory, i.e.

N =EAe, T=GAy, M=EJy (15)

with E4, GA and EJ axial, shear and flexural stiffness moduli. For this structural model the strain energy is
measured by

1
Ou] = 3 /I{EAsz + GAY* + EJ, y*}ds

4.1. Buckling analysis (linear-elastic model)

For varying axial compression loads, the natural fundamental equilibrium path of the bearing is
characterized by deformed configurations still rectilinear defined through the following:

N'[s] = cost = N, = —4 e'fs]

77]s) = MT[s] = 0 I e

fls], = cost = &,

o (16)

=u
— o f
=X

together with the linear relation
N = Edeg, (17)

Along the fundamental path, the critical condition of singularity of the tangent stiffness operator (2) is
expressed by

/ {fvsu,s + ('T - N09> Sw, + ('T(1 + o) — N, (w 001+ so)>)50 +M50,S} ds=0 (5u,dw,50)
(18)

according to

N = (Ngin), T = (Tgby), M = (M)

Taking into account the boundary conditions (11), it can be demonstrated that such an integral relation is
equivalent to the following differential ones:

N=0 || T-N0=0 | M;+Nyv,=0 (19)
Because of the constitutive relations (15) and
N = EA(&,by,) = EAi
. . N,
T = GA(y,in) = GA W, + 0 1 + > (20)
EA
M = EJ (1, iw) = EJO,

being valid, the relations (19) are expressed by the differential equation system in the fields (i[s], w[s], 0[s])

. . No No ; h No No n__
ug—o || W3(1+aGA)0 H EJgs\N0<l+aGA) —0
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The last equation, with the essential boundary conditions (0[0] = 0[/] = 0), admits the trivial solution
0[s] = 0 that agrees with the fundamental path. It can be shown that it also admits solutions in agreement
with the form

0fs] = Csin (”L;S) n=1{0,1,2,...}

for particular critical values N, of the internal normal load (and then for particular critical values
A, = —N,, of the external load) that fulfill the condition

N, N\ _
EA GA)

n*n?

EJZ—2+NCH<1+

These critical values of the compression load correspond to bifurcation conditions along the fundamental
path. In particular, we are interested in the lower critical value /: it can be shown that this can be obtained
for n = 1, and then connected to the critical condition

’/[2 )vb )bb
T E] (122422 ) = 21
i b( EA+GA> 0 1)

equivalent to an algebraic second degree equation in A,

1 1 7’
2 R o _
Ab(—EA+GA>+Ab BT =0

As EA > GA, i.e. (—é + &) > 0, is the usual design of bearings, the last algebraic equation admits the
following real solution:

— 1+ an B (- L+ L)
2(—z+a1)

which represents in closed form the critical compression load searched for. To this value the critical mode

defined by

. . Ao A . (TS 0. (TS

;=0 | wy= —<1 —EA+a>Cs1n<7) I 0=Csin (7)
is associated. Taking into account the essential boundary conditions (i#[0] = w[0] = 0) and making use of
the norm

(22)

Ap =

[[o]] =[7] =1 (23)
the primary critical mode is then expressed by the following displacement fields (see Fig. 4):

) . 1 1 s . n 1 . (TS

M[S] =0 H W[S} —E—ECOS (7) || Q[S]——z—lmsln <7) (24)

4.1.1. Remarks on the critical behavior of the linear-elastic model
It is interesting to study the relationship (22) to deepen the dependence of the critical load A, on the
geometric and constitutive parameters of the model. It is possible to rewrite Eq. (22) in this way

L 2
T 2( B/ EJ_
1“_\/1'1'4” (—Hrt+ &)

(25)
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w=1
—1
\
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Z,

Fig. 4. Buckling model.

as Ag = m* & % (Euler’s critical load). This makes it clear that the bifurcation load depends linearly on the
normal elastlclty modulus £ and that axial and transversal rlgldltles influence the bifurcation load only
through the relative ratios with the bending rigidity EAIZand GA’ . In particular, at the limit condition
Eg‘J’Z = oo (axially undeformable beam) the expression (25) is coherent with the expression of Haringx’s
critical load

- 2

I =
14 /1+4n2 G%

whereas only satisfying both the limit conditions (EA’ = 00, %J’z = 00) (the elastical beam model, axially and

tangentially undeformable) the express1on (25) c01n01des identically with Euler’s critical load Ag.

It’s worth noting that, As 4 = — 25 4+ &% > 0 is the usual design for bearings, it results that A, < Zg.
Also it is worth observing that che critical load 1, decreases for increasing values of the coefficient
4= E - 12 + G]ZZ as a consequence, A increases for increasing values of the ratio GE‘J’ and for decreasing
values of the ratio EA’ . From the last observation, it results that A, > Ag. In conclusion, for the usual

bearings design the relat1on

g < Ay < g

is valid.
4.2. Post-critical behavior (linear-elastic model)

Once the fundamental path u'[4] and, from the resolution of the bifurcation problem, the load and the
primary mode of buckling (4, ¥,) are known, the Koiter evaluation of the post-critical path (3) is com-
pleted by determining, in sequence, the post-critical slope 4, the secondary buckling mode &, and the post-
critical curvature 1. Setting the lateral displacement on the top of the structural element as the curvilinear
abscissa of the asymptotic representation of the post-critical path (3).

& =wll],
it can be demonstrated that it determines the preceding normalization condition (23) of the primary
buckling mode and the following orthogonality condition between primary and secondary buckling mode
by L Oy <= W[[W[l] =Ww[{] =0 (26)

4.2.1. The post-critical slope
The post-critical slope 4, is defined in (4) by means of the ratio of two scalar quantities computed by
(see Appendix A)
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Mne3
Doy =0

27
@g'abi;ﬁ:—(l 2—+2—>/02 @7)

As a result we have

1 ¢/// }

Ay = > =
2 <15”’ubvb

In conclusion and coherently with the symmetry of the problem, the post-critical path results in a zero value
of its initial slope (at the bifurcation configuration).

4.2.2. The secondary buckling mode )
The problem (5) that determines the secondary buckling mode &, = {ii[s], w[s], O[s]} is defined by the
tangent stiffness operator @;(-)(-) and by the following known terms:

"”. o ;“b 02
(28 Su /l{ (1 2 —|—2GA>0 Suﬂ}ds

The problem (5) is then expressed by

N I n \ oo . .
/Z { <N + EA <1 222+ 2@)0 >8u + (T = Nl ),
+ (T(l +ep) — No (w +O(1+ sb)>)80 + MSO,‘V}ds =0 V(5u, 5w, 50)
where

N = (Njpp) = Edii,, T = (Tloy) = GAGv, + (1 +&)0), M= (M) = EJO,

With developments similar to those carried out in the bifurcation problem and taking into account the
orthogonality condition (26), this problem admits the following solution in the components of the sec-
ondary buckling mode:

= - (1= 2520 )i, ] = 0] =

4.2.3. The post-critical curvature )
Once the secondary buckling mode is known, the post-critical curvature parameter 1, is computed by the
ratio (6) with a denominator given by (27) and a numerator given by the following terms:

«pg’bgzzEA<1—2;—;+2;‘b> /04ds+)b< 42 +4—)/94ds
«Dgﬁﬁz/{N(egbb)}ds:EA(l 2—+2—) /04
!

From this we obtain

Ve, (1-4keek)  (3)
e (128 28) (14t

/lb:—

)2

Q|(T
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(m/497

i In — 141
Fig. 5. Values 2VS. X =—7;:F 51

It is a simple task to demonstrate that the post-critical curvature coefficient depends linearly on the normal
elasticity modulus.

4.2.4. Remarks on the post-critical behavior of the linear-elastic model
A measure of the influence of the post-critical behavior is given by the relationship between the initial

curvature of the post-critical path and the bifurcation load value ( ) For Eq. (28), this ratio is evaluated
by

(1 + 4n2j—"A>
'E

, . 2
(1+2m224) (14 m224)
E AE

o)

in terms of the coefficient 4 = E = 12 + L o 12 and of the ratio )b between actual and Eulerian bifurcation load.
For positive range leues of the coefficient 4 (the only interesting one from a technical point of view) and
for several values of < 1,its Values are represented qualitatively in the graph of Fig. 5. It can be observed
that the post- crltlcal coefﬁment i always assumes positive values which are always less than (ﬁ) i.e. the
limit value of the coefficient relative to the elastical model (—b = 1). In particular, for increasing values of the
coefficient 4 the values of are rapidly decreasing and, in the cases of technical interest, practically became
4—2 ~ 0. In conclusion, posnlive values of the ratio = “’ have a stabilizing effect of the post-critical behavior on
the general limit behavior of the model. However ‘this effect is very limited because of the low value of this
ratio. This conclusion is also validated by the numerical results obtained from the examples reported
further on.

5. The nonlinear-elastic beam model

The new beam model is obtained for the same kinematical (9) and (10), and then static (12) and (13),
relationships, but enriching the constitutive relations to better take into account the nonlinear elastic
behavior of rubber materials. In particular we refer to isotropic, hyperelastic constitutive relations,
opportunely deduced in Marzano (1994), D’Ambrosio et al. (1995) from well-known Blatz and Ko
equations (Blatz and Ko, 1962), characterized by the following volume density of the strain energy >

2 The case p = 0 agrees exactly with the Blatz and Ko constitutive model.
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1 2 2 — 1 .2 2
OIF) = 5 | IFIP =3+ ((deth) " — 1)| + 5 p(IFi 1)

where the tensor F is the gradient of the deformation (9) and (u, o, p) are the constitutive coefficients of the
rubber. Recalling the definitions (10) we obtain

1 2 e 1 2
o[u, w, 0] =5u[— Tt (tetz) +7 + (I +etz) " - 1)] +op|(l+etzP+72 1]
The strain energy is then computed by

®[u, w, 0] :/[ </A(p[u,w, 9]dA>ds

On the basis of the identity

¢’8u:/ (/((p/ﬁu)dA)ds: / (Nde+ Tdy + M3y)ds
1 I

A

we get the following representation of the constitutive relations for the equivalent beam model:

0
N=/ a—@[s,y,x]dA (29a)
A 8
0
1= [ 5ol (29b)
4 97
0
M= [ —oley,xd4 29¢
| 5y olani (29¢)

Explicit expressions of these constitutive relations and other variational details are given in Appendix A.
5.1. Critical behavior (nonlinear-elastic model)

The structural model still exhibits the trivial fundamental path (16) where, however, because of the
constitutive equation (29a), the following nonlinear relation between the normal stress and axial shortening
parameter k£ = 1 + ¢, is valid

No = pA(k — k") + pd (k(K* — 1)) (30)

Here A4 stands for the area of the beam cross-section while, in the following pages:

Jdéf/zsz, J4d§f/z4dA
y A

(It is supposed that [,zd4 =0 and [,z'd4 =0.)

The bifurcation condition (2) is still expressed by Eq. (18) and then by Eqgs. (19). Because of the new
constitutive model, these now give the following nonlinear differential equation system in the fields
(#@[s], w[s], O]s]) (the critical mode):

i, =0 | w,sz—Mé I Joc[k]@jss—No[k]Mézo (31)

Blk] Blk]
being set (see Appendix A for expressions of functions «[k], S[k] and n[k])
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No = AKBK] —Anlk] T = (Tyiv) = ABK| (i + Kk0) 32)
N = (N(I,Ub) :Aa[k}uv M = (Tévb) Z.]Ot[k}gA

Satisfying the boundary conditions and the normalization (23), the system (31) admits a solution in the
form

il =0 | ol =2 —scos (Z2) | als) = -2 Bl gy (79

2 2 l 21 nlky] /
in relation to the smaller k, value that realizes the condition
n’ n ko)
ki N, ki =0 33
[ b] 2 + [ b] ﬁ[kb] ( )
and then in connection with the bifurcation load
b = —No ko)

It is worth observing that, in contrast to the solution of problem (21), the solution of the bifurcation
problem (33) cannot be obtained in closed form. That solution, however, can be computed by means of
common procedures of numerical analysis. Also in this case, it can be demonstrated that the critical value,
for the same values of the constitutive coefficient ¢ and of the ratio p/u, depends linearly on the elasticity
modulus u.

5.2. Post-critical behavior (nonlinear-elastic model)

5.2.1. The post-critical slope

As
d)iy =0
the value of the post-critical initial slope is given again by
. 1 ¢///~%
}“b = - M~ o
29 Vb

5.2.2. The secondary buckling mode
The known terms of the secondary buckling mode problem (5) are now given by

Ny
(DW 814 = /] {A <O€bkb + (ﬁb — 2OCb)Aﬁb

with

2
yeT >025u —|—Ja)b9 8u3}ds

No=Nolkol, o =olke). By = Blhols 1o = nlko],  p == ko]

The problem (5) is then expressed by

/ N+4 ks + (B — 200) —— + 2pks N2 0 + Jwbe du (T - NlDé) )
+ + s + W
! Aﬁb 42ﬁ " ’

+ (ka — Ny (w + ékb))SH + Mae,s}ds =0, V(u,dw,d0)
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where
N = (N];Ub) :AOCbi'l,S, T = (Tél)b) :A,Bb(wy +kb0), M = (M];Ub) :JOCbQS

Taking into account the orthogonalization condition (26), the problem admits the following solution in the
components By, = (i, w, 0) of the secondary buckling mode

.. By ) Ny pky N2 \., Joy .o . .
i ky + -2 |—4+2— 0" — 0 w(s] = 0[s] =0
<b ( oy APy, o A2} Ao, s = 0]

5.2.3. The post-critical curvature
The developments (reported in Appendix A) of the several terms lead to the following expression for the
post-critical initial curvature coefficient

Ao = —

M (”ﬂ)zA(C°+ 5 Gt AZ/ﬂC2+ 33C3+A“/’4C4)
4

A~ -
3y ui, 20, Dy + 43D +A2ﬁ2
where the parameters (Cy, Cy, Cy, C3,Cy, Dy, Dy, D,) are connected to the constitutive parameters of the
model and to the coefficient ky: their expression is given in Appendix A. It can also be demonstrated that,
for the same values of ¢ and p/pu, the post-critical curvature 4, depends linearly on the elasticity modulus u.

6. A condition of critical equivalence between models

It’s worth noting that the two beam models examined are quite different. In fact, going beyond the
different models of elastic isotropic material which the two models refer to (linear-elastic and nonlinear-
elastic), it’s sufficient to observe that the linear-elastic model is defined in the context of first order theory
(on the basis of the St. Venant hypothesis and by means of ‘ad hoc’ technical assumptions for the shear
deformability) and projected in a geometrically nonlinear context. The nonlinear-elastic model, instead, is
directly defined in a nonlinear geometrically exact context and coherently reduced to a nonlinear-elastic
beam on the basis of a precise kinematical constraint (of cross-section rigidity).

However, with the aim of comparing in quantitative terms their post-critical behavior, it is possible to
define the constitutive coefficients (EA4, GA,EJ) of the linear-elastic model by means of a condition of
equivalence, in terms of critical load, with the nonlinear model, i.e. starting from the resolution of the
critical problem of the nonlinear model and obtaining the following relations:

eq—kb717

from (17), (19), (20) and (32).

EA GAeqg =A- Py, EJeqg=J - (34)

7. Numerical results

The aim of the numerical experimentation is to study, from a qualitative and quantitative point of view,
the influence, in terms of load-carrying capacity, of the post-critical behavior of the two beam models of
laminated bearings proposed. In this section some of the results obtained for ideal examples of homoge-
nized bearings are reported having
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¢ the same sectional geometry (circular and hollow, with external radius R.y; = 120 mm and internal radius
Rine = 10 mm),
o several values of height /, and then several slenderness values s/ = [/ \/AZ as reported in the following:

/ (mm) 31 61 121 133 181 241 301
sl 0.515 1.013 2.009 2.209 3.006 4.003 4.999

o secveral values of the constitutive coefficients (EA4, G4, EJ) of the linear model on the basis of

E

EA=FE-A, GA=G-A, EJ=E-J, G=—+——
2(1+40)

o several values of the constitutive coefficients (u, o, p) of the nonlinear model and, then, of the constitutive
coefficients (Edeq, GAeq, EJeq) Of the equivalent linear model.

In the following pages, imperfect structural elements will be obtained taking into account small addi-
tional imperfectional loads defined by a horizontal force p[A] = T applied to the top of the elements. From
Egs. (7), (8) and (23) and with the post-critical slope coefficient A, being zero for the cases taken into
account, the A-¢ relationship is given in implicit form by

Table 1
Linear-elastic model: critical and post-critical values for varying values of the constitutive coefficient ¢ and of the slenderness
(G =0.4407 MPa)

) ! (mm) 2o (N) Jn (N) Zb (MPa) Ixexp
0.4545 31 239702.740 (196377.662) 3.731762393 0.007480564
61 115047.662 (95276.151) 1550904150 0.025080537
133 46086.895 (39134.634) 0.441072514 0.088464588
181 31014.407 (26751.477) 0.237507994 0.125441693
241 20941.582 (18392.180) 0.122536612 0.169926248
301 15142.905 (13516.232) 0.068599887 0.205218830
0.4762 31 240716.458 (197903.284) 3.670534423 0.007326843
61 115607.287 (96048.934) 1.528870980 0.024604543
133 46378.632 (39483.359) 0.437059881 0.083348213
181 31238.838 (27003.416) 0.236095988 0.123800069
241 21114.699 (18576.310) 0.122242150 0.168128049
301 15281.813 (13658.881) 0.068643984 0.203484158
0.4950 31 241605.049 (199223.465) 3.619327473 0.007198056
61 116096.044 (96717.684) 1.510390500 0.024204800
133 46632.142 (39785.203) 0.433668053 0.082251780
181 31433.540 (27221.533) 0.234894803 0.122407286
241 21264.732 (18735.776) 0.121987954 0.166594676
301 15402.161 (13782.468) 0.068679234 0.201997870
0.5000 31 241839.063 (199568.634) 3.606200579 0.007165010
61 116224.499 (96892.537) 1.505645111 0.024102084
133 46698.582 (39864.134) 0.432793201 0.081969072
181 31484.520 (27278.576) 0.234583838 0.122047298
241 21303.993 (18777.488) 0.121921586 0.166197189

301 15433.648 (13814.803) 0.068688011 0.201611519
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T 1-
= s = b + 5 A E 35
A EaaR Tt (35)
This relation is determined by the knowledge of the three scalar coefficients (1, /s, @!'uv}) only. Following
the perturbation approach, for given values of the horizontal load T, this equation defines, in the manifold
(3b), the equilibrium path of the imperfect structural elements, i.e. the values of the axial load 2 for varying
values of the horizontal displacement & in the top of the bearing.

7.1. Results of the linear-elastic model

The results obtained for the linear-elastic model in terms of critical and post-critical behavior are
summarized in Table 1. As can be observed, the critical value A, is obviously strongly affected by the
slenderness values, but much less by the coefficient values v. For comparison, Haringx’s critical values are
also reported in the table: as already observed, J, > Ay is always obtained, with 10~ 15% difference in
values for the range of cases tested.

The numerical results of Table 1 verify what has already been observed regarding the qualitative post-
critical behavior of the model. Low positive values of the post-critical curvature coefficient 4, indicate a
stabilizing effect, albeit small, on the general behavior of the structural model. In fact, for a transversal
post-buckling displacement on the top of the bearing equal to 100% of the relative height, the load

08 i O/

06 I
wl 0
;
|

>>

0z ] —O— e=0001 | |
' —O—— £=0.005
- | |
o ——
-0.2 o] 0.2 0.4 0.6 0.8 1 1.2
W/l (1=31)
1.4
be /e/e'/‘rle‘
7 |—o—9
1
A i
Ap 08
06
0.4
0o b —O— £=0.001
' —<O—— £=0.005
1 Il Il
0 ——
-0.2 o] 0.2 0.4 0.6 0.8 1 1.2

W/ (1=241)

Fig. 6. Equilibrium paths of the linear-elastic model.
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increment along the post-buckling path (measured by the coefficient A, =1 x 4 22 x [? reported in the table)
reaches the maximum value of 20% of the bifurcation load only for the more slender bearings (and then for
the relatively greater transversal displacements relatively). It is also worth noting that this post-critical
coefficient is substantially unaffected by the elastic constitutive parameters (G, v).

The curves of the equilibrium paths, typical of the observed behavior, are reconstructed in the diagrams
of Fig. 6. With reference to the perfect structural element (absence of imperfections), the path bifurcates
with a substantially flat post-buckling path. For several values of load imperfections, the curves of the
equilibrium paths are asymptotic to the two paths of the bifurcation phenomenon, and then express a load-
carrying capacity of the structural element practically by the value 4, of the critical load.

7.2. Results of the nonlinear-elastic model

The results obtained for the nonlinear-elastic model in terms of critical and post-critical behavior are
reported in Tables 2 and 3. The critical load values are obviously strongly connected to the slenderness of
the bearings. In contrast to what observed for the linear-elastic model, the dependence of the critical value
on the constitutive coefficient ¢ (increasing values for decreasing values of o) is greater. Instead the
dependence of the critical values on the ratio p/u, nevertheless with a variation up to 40% for low values of
0, is more limited.

The general view of the post-critical behavior of the nonlinear-elastic model appears quite variegated. As
summarized in the diagram of Fig. 7, the relative parameter A, =1 x j—z x [? is quite variable in relation to
the coefficient o (however, this variability decreases for decreasing slenderness). From positive to negative
values, this post-critical parameter is strongly influenced by the ratio p/u. The case p/u = 0, corresponding
exactly to Blatz and Ko’s rubber elasticity model, is relevant: negative values of the post-critical coefficient
Ape can be noticed, that negatively affect the load-carrying capacity of the structural element. For increasing

Table 2
Nonlinear-elastic model: critical and post-critical values for varying values of the constitutive parameter ¢ and of the ratio p/u (height
[ =133 mm, u = 0.4407 MPa)

4 p/u ky A (N) A (MPa) IxEx P Gx2xP),
10 0.0 0.731388622 603534.356 -10.769 —-0.1578 (0.1040x 107%)
0.1 0.734806532 573239.978 2.804 0.0433 (0.1210x 10°%)
0.5 0.749492629 460680.260 51.946 0.9973 (0.2091x107%)
0.8 0.761560921 386155.295 82.097 1.8804 (0.2382x 10°%)
1.0 0.770062881 341582.565 98.312 2.5456 (0.2495x107%)
20 0.0 0.828380048 1015901.349 -17.911 —-0.1559 (0.8027x10°10)
0.1 0.829685760 982802.838 4.104 0.0369 (0.2451x10719)
0.5 0.835163061 855791.572 87.849 0.9079 (0.3467x10710)
0.8 0.839545916 766586.664 145.284 1.6762 (0.3706x 107%)
1.0 0.842600440 710216.716 180.516 2.2489 (0.3779%x107%)
30 0.0 0.870786313 1426102.822 —-25.053 —-0.1554 (0.4135x10719)
0.1 0.871490920 1390763.578 5.492 0.0349 (0.8738x10°10)
0.5 0.874415928 1253455.300 123.647 0.8725 (0.1134x107%)
0.8 0.876725439 1154969.526 207.398 1.5882 (0.1185%x107%)
1.0 0.878321927 1091588.093 260.539 2.1110 (0.1198x107%)
100 0.0 0.948153131 4265747.695 —-74.632 —-0.1547 (0.1845x 107!
0.1 0.948249134 4222344.713 15.316 0.0321 (0.3180x 107!
0.5 0.948639577 4050372.194 371.516 0.8112 (0.3529x 107!
0.8 0.948939326 3923160.135 634.636 1.4307 (0.3577x 107!

1.0 0.949142540 3839218.903 807.988 1.8614 (0.3583x10~!1)
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Table 3
Nonlinear-elastic model: critical and post-critical values for varying values of the constitutive coefficient ¢ and of the slenderness
(p/1=0.8, u = 0.4407 MPa)

g [ (mm) ky /i (N) s (MPa) Ix :—E x 2 (4 x :—s X 17)
10 31 0.589865885 6576186.377 41531.918 3.0346 (0.1941x10~'2)
61 0.665260632 1745448.125 2389.857 2.5472 (0.1029x1071%)
121 0.749422096 463122.549 124.997 1.9758 (0.7118x107°)
181 0.801576171 214215.138 19.922 1.5234 (0.9629x 107%)
241 0.838634154 124530.043 4.821 1.1242 (0.5128x1077)
301 0.866475189 82053.573 1.426 0.7876 (0.1797x107°)
20 31 0.733415674 13303819.850 63581.898 2.2964 (0.6916x10713)
61 0.781233631 3523052.456 3904.147 2.0617 (0.2180x 107"
121 0.832315918 922066.433 218.864 1.7376 (0.1416x107°)
181 0.863281732 420327.342 36.577 1.4254 (0.1765x107%)
241 0.885353369 240878.112 9.106 1.0978 (0.9600 % 10-%)
301 0.902235495 156550.382 2.647 0.7661 (0.3494x1077)
30 31 0.799549831 20331848.780 86361.176 2.0410 (0.2125x10713)
61 0.834661526 5355413.665 5419.713 1.8828 (0.7923x1071%)
121 0.871544613 1390980.420 311.242 1.6380 (0.5034x1071%)
181 0.893698241 630380.363 52.942 1.3757 (0.6076x 107°)
241 0.909485263 359424.734 13.353 1.0789 (0.3328 x10°%)
301 0.921625760 232514.618 3.881 0.7561 (0.1227x1077)
100 31 0.922148149 71065719.810 246029.875 1.6635 (0.5270x 10-1%)
61 0.934517327 18489085.450 15926.483 1.6026 (0.2958 x10713)
121 0.947181372 4734839.845 947.081 1.4643 (0.1824x 1071
181 0.954677942 2125739.828 165.370 1.2743 (0.2093x107'%)
241 0.960012339 1203058.506 42.597 1.0282 (0.1159x107°)
301 0.964142825 773303.580 12.442 0.7288 (0.4360x 107°)
4
7012(.).,‘ Py <~
5 R T
0=30 "k ~T15
Apc 1o=100"[ -t
1 = S=s
. 0=0 | | p/m=01
o=20 I
. p/u=0[0
-1
0 1 2 3 4 5

sl

Fig. 7. Nonlinear-elastic model: post-critical coefficient 4, vs. slenderness and constitutive coefficients.
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Fig. 8. Equilibrium paths of the nonlinear-elastic model.

values of the ratio p/u, the values of the post-critical coefficient go back to the positive range, attaining a
relevant stabilizing effect for p/u ~ 1.

The geometry of the element also affects the post-critical values. However, in a different way as to what
was observed for the linear-elastic model, the higher values of the coefficient 4, are attained for the less
slender bearings. i

For comparison, in Tables 2 and 3 the post-critical parameter A, = (4 x j—‘; X 12)eq relative to the
equivalent linear beam model in the sense of (34) are also reported: although the post-critical behavior of
the nonlinear model is variable, the linear model is characterized by a post-critical behavior which is always
stable but to a limited extent.

Finally, in the diagrams of Fig. 8 the curves of the equilibrium path for two typical cases of the observed
behavior, stable (case p/p = 0.8) and unstable (case p/u = 0.0) are represented. For both cases the load-
carrying capacity of imperfect structural elements shows significant differences from the critical load value
of the perfect elements.

8. Conclusions

The paper has proposed and studied two different beam models for laminated elastomeric bearings. This
study has been mainly oriented towards the evaluation of the critical and post-critical behavior of these
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structural models in the framework of a Koiter perturbation approach. For the linear-elastic model, the
results of the analysis indicate that its post-critical behavior does not quantitatively affect the load-carrying
capacity of the bearings (proving, for this model, the idea that the stability analysis can be resolved by only
computing the critical load of the problem). On the contrary, the nonlinear-elastic beam model exhibits a
strongly variegated post-critical behavior that certainly affects the load-carrying capacity of the structural
element. Therefore, the stability analysis cannot be confined to the determination of the critical load but
needs an exact evaluation of the post-critical behavior.

However the question of the accuracy of both models in predicting the behavior of real laminated
elastomeric bearings is far from closed. In particular the problem of defining the constitutive coefficients
(EA,GA,EJ) (u, p,0) on the basis of a homogeneization criterion that takes into account the real con-
structive geometry of laminated bearings is still open. In fact, the choice of that criterion is clearly essential
to obtain an exact evaluation of the load-carrying capacity of the structural elements: indeed it is more true
and delicate for the nonlinear-elastic model, where the criteria must take into account equivalent behavior
conditions not only confined to the critical load but also able to cover the post-critical range. This theme is
deferred to a future work.

Appendix A. Some kinematical relations

de = &'du = ducos O — dwsin O — 50y
&y = 9'8u = Su,sin O + dw,cos 0 + 60(1 + ¢)
Sy = »'du = 30

&"idu = —du ,0sin 0 — dw 0 cos 0 — 30(y'i)
V'iudu = du 0 cos O — dw 0sin 0 + 50(¢'i)
¥ udu = 0
" itidu = —8u ;00 cos 0 + w00 sin 0 — 50(y" i)
V" o0du = —5u 00 sin 0 — dw 00 cos O + 50(¢"iuir)
¢" wiitdu = du 000 sin 0 + Sw 000 cos 0 — 50(y" wiiir)
Along the fundamental path (e =¢,,w=0=0,y =y =0)
& du = du,,
Yo du = dw, + 30(1 + &)
&lidu = —dw,0 — 50w, — 300(1 + &,)
V0idu = du 0 + 30
& ititdu = —du 00 — 50(i,0 + Ou)
Y idu = —008w , — w080 — Ow 50 — O0(1 + &,)

6 wiidu = dw 000 — 50(y" it
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In the bifurcation configuration (it; =W, = 0=0)
(i) = ity =0 (i) = W, + (1 + )0
(eyby) = ity (i) = i + (1 + )0 =0
(cyi) = =290 — (1 +a)0® (if) = 20,0 =0
(elid) = =300 =0 (y'0d) = =307, — (1 + )0
(e i) = 40%0, + (1 + &) 0" (L indu) = du,0 + 80it, = du,0
(el'i2du) = —20,080 — du 0% = —Su ,0*  (Ylaiy) = it,0 + Oic, = i1,0
(el'at?) = =200 — it,0° = —it .07 (ypin) = 0,
(e/82) = =20 — (1 +&)0 =0 ( ;vb)_e =0
(

Séubi)b) = —W130 - w‘sf\) - (1 + Sb)()o

Appendix B. Higher variation of the strain energy
Along the fundamental path (7, = M, = 0):
& irdu — / LN (e, 8m) + (T2) () + (ML) () + N } s
!
O idu = / {(N(')'ﬁu)(e;f)u) + (NJit) (ehudu) + (NLu) (€"tudu) + No (e tridu) + (T, inie) (7, du)
!
+ (Tgie) (Vudu) + (Tgir) (yqiidu) + (Mé'itit)(xiﬁu)}

O, uiidu = / { (N ) (eliudu) + (N ) (elhudu) 4+ (NYii) (ehudu) + (N i) (el iirdu) + (N i) (&2 uirSu)

nm

+ (Nu) (e uirdu) + (N uinir) (€] du) + No (e, wunirdu) + (T aie) (youdu) + (T, i) (yhtdu)
+ (T3 ) (ygudu) + (Tow) (v wirdu) + (Toi) (g wiedu) + (Toie) (7o wirdu) + (T, witir) (y,5u)

(M i) (' Su) }ds

In the bifurcation configuration (¢ b, = yLoi = &/ vi = P10 = xh0o = &1t = 0)
a5 = [ { i)t s

i du _/1{(N” iip) (e 8u) + 2(NLin) (" bndu) + Ny (er tpdu) + (T v7) (yi du) + 2(T}ow ) (vhdndu)
+ (MY ><yb8u>}d

>y = /,{2 (Ngin)(e4i2) + (T3 (i) + (MUER) (i) fds
i — / NI (") + No (i) + (Téfi,bb)(y;)i;.,)+(Tgab)<v{;ai;b)+(Mgm>b)<x{,i7b)}ds
1

;;”;i—/, {300 4i2) + Mol i9) + 3(Tye) Gy 83) + (T8 () + ('63) (4 0) [ ds
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Appendix C. The nonlinear-elastic model case
C.1. Constitutive relations

Set £ = 1+ ¢ and using the following functions:
o] = p[1+ (1+ o) 7] 4 p[3x* 1]
Bix) = u+p(* = 1)
] = 4

the nonlinear elastic constitutive model is expressed by
0
4 A
0 3
T= | zolenddd= | Bk +z]}dd+4p)
4 A

0
:/a—x¢[87V,X]dA:/4{Z(k—f—ZX)ﬂ[k—l—ZX]—zr][k+zx]}dA _'_przx
y

Along the fundamental path (y = y = 0)
No:Akﬂ[k]_A”I[k]v To:07 MOZO

C.2. First variation of the constitutive relations along the fundamental path
N, = Nlit = Ao[k|(elit) = Aa[kli
T, = Ty = ABIK] (V1) = ABIK]¥v., -+ An[k]0 + Nob

M, = M it = Jolk]|(y,it) = Jo[k]0,

C.3. Some quantities in the bifurcation configuration

o 0%
Set oy = a[kb]s ﬁb = ﬁ[kb]s My = ”[kb]s Wp = a [kb] a a2 [kb]
C.3.1. Strain
D) = W + ky0 = ke 0 =20
(Vp0p) = Wy + ke ( ﬂb+ b> 4B,

(eli2) = —2w,0 — kyb* = ( i ﬁb kb) 0 = (kb - 2A_ﬁb>92

"3 a2y, n3 __ 3 o & N3
(’))b Ub) 30 W ka = ( ﬁb kb)H <2kb 3Aﬁb 0

(e 1) = 40% W, + kp0* = < 4’7b+k>0“ ( 3kb+4—)04
By APy
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C.3.2. Tension
(Niiv) = N = Ampit, =0
(Niin) = Ny = Aowit, = %N[ﬂv] =1
(Tip) =T = No0
(Ty'i5) = ABy (V) -+ Adpks (7, 05) (e06) = 0
(i) = ABy(fitiy) + pA (2K (i) (¢ i) + 2k (chit) (1))
=,0 <A[3b + Zpkb&)
By
(M'i?) = Jon2(¢'ip)0, = 0
(M'itiy) = Jwb((g'ab)é (&) 0, )
= Joit 0,

(Nip) = Aoy (eip) + A2pky (Y 05)” + Jaop(0,)

2

Ny N{
<Otbkb — 20!1) Aﬁ + 2pkb

2 2
A2ﬁ2>9 + Joy, 6

T3 = BoAOE8) + pA |6 (453) [ Ko + pA[6(s400)" | + I [6(7460)0,0.

2 3 5
0° +J6p EQQ

:A[Zkbﬂb+(p6k2 3ﬁb)Aﬁb 12 kbANﬁ Nﬁ

M5} = 3wpJ0,(£"02) + 040’

Ny
=J |:3kb60b — 6Q)b

2
Aﬁb:|9 0 +J4‘L’b9

C.3.3. Energy

ne3
oo, =0

2
+ 2pky,

(D”/ Su_ (fxbkb“" ﬂ 2OCb)Aﬁ AZﬁ )/{926u,5}d5‘+]60b/{Q?YSU.s}dS
b b !

Ny N2 .
/I~ 2D ~'o 2 A 2 A
q5bubvbA<fxbkb+(ﬂ 2ab)Aﬁb+2 pks ﬁ)/{e }ds+Jwb/ {G‘Suﬁs}ds
1
2

A2
_ m fy - Opy \ Ny N}
() Grte) G (o (2= oo 5 )



5756 A.D. Lanzo | International Journal of Solids and Structures 41 (2004) 5733-5757

4
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C.3.4. Post-critical curvature expression

. WI 4_3‘15/, (T( ﬂ )2A (CO —|—/;\;7ith] Azﬁz C2+ [33 C3 +A4ﬁ4C4)
Ab:—i
4

3y ut, 20, Dy +A/f Dy +Az/;zD
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