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Abstract

The analysis of the instability phenomena that widely affect the behavior of laminated rubber bearings is examined.

A Koiter perturbation strategy is followed. On the basis of two different constitutive relations, two different one-

dimensional nonlinear models are used: the first one, linear-elastic, derived from the classical beam theory; the second

one, nonlinear-hyperelastic, consistent with the framework of three-dimensional finite elasticity. For the two models,

emphasis is placed on the influence of the post-buckling behavior in terms of its load-carrying capacity.
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Keywords: Multilayered bearings; Structural stability; Post-buckling analysis; Perturbation approach; Beam models
1. Introduction

The behavior and design of multilayered elastomeric bearings, widely used for bridges and seismic base-

isolation of structures, are heavily affected by buckling instability phenomena in axial load compression

conditions. In fact, despite their geometric form, this effect is connected with the low ratio of transversal
and axial stiffness of these structural elements.

The development of an accurate mechanical model of such instability phenomena needs the setting of

two fundamental points: the strategy of analysis and the kinematic-constitutive model of the structural

elements. With respect to the strategy of analysis, the attention in literature has so far been focused on the

determination of the buckling critical load in axial compression, considered a good estimation of the load-

carrying capacity of the element, whereas no attention has been paid to the study of the post-critical

behavior, implicitly considered as having no influence on the structural response.

Nevertheless, no rational motivation has been put forward to support these convictions. This could
only be obtained on the basis of an effective knowledge of the post-critical behavior of the structural

element taken into consideration: it is the author’s opinion, in fact, that only that knowledge could give a
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comprehensive view of the structural instability phenomena. Therefore, the study of the critical and post-

critical behavior of layered elastomeric bearings is the aim of the present paper. To this end, the paper

follows the guidelines defined in Salerno and Lanzo (1997) and Salerno (1992), using a Koiter pertur-

bation strategy (Koiter, 1945; Budiansky, 1974; Casciaro et al., 1991, 1992) that synthetically models the
critical and post-critical structural behavior by means of some simple scalar coefficients, and at the same

time allows us to take into account the geometric and load imperfection sensitivity in the same direct and

simple manner.

With respect to the structural model, prevalent references are made in the literature to one-dimensional

beams with shear deformability: this model gives a synthetic representation and is motivated by the con-

structive features of laminated elastomeric bearings. In particular, the beam constitutive model most widely

used is derived from the classical linear elasticity. Exceptions to this are the papers of Marzano and

coworkers (Marzano, 1994; D’Ambrosio et al., 1995; Castellano, 1995) where a beam constitutive model is
proposed, derived from Blatz and Ko’s three-dimensional nonlinear hyperelastic relationship (Blatz and

Ko, 1962), that more accurately represents the behavior of the rubber.

The framework becomes confused when we review the kinematical beam models suggested for the

buckling analysis of the structural elements which are the object of the present paper. In fact, together with

nonlinear beam models derived from technical theory (Engesser, 1891; Haringx, 1948; Timoshenko and

Gere, 1961), i.e. enriching the linear beam model with ‘ad hoc’ nonlinear terms based on diversely moti-

vated assumptions, are also present beam models rationally derived from an exact geometric representation

(Reissner, 1972; Antman, 1977, 1995). The reader, discouraged by this picture, can consider the points
listed here (see Pignataro et al., 1982; Salerno and Lanzo, 1997; Reissner, 1982):

(1) A nonlinear analysis of the problem, accurate up to any asymptotic order, requires a kinematical non-

linear model accurate up to the same order: only kinematical relations, geometrically exact and thus

rationally well-founded, meet such condition.

(2) In the critical analysis a low order of accuracy is required. Within the limits of critical analysis, it can be

demonstrated that some of the technical beam models suggested are rationally well-founded, since they

are derivable up to the requested order from geometrically exact relations. However, the practicability
of such models cannot be transferred to different contexts, for example the post-critical behavior anal-

ysis, that require a higher level of accuracy.

(3) Several strain measures, all rationally well founded, can be used. At the kinematical level, no single

measurement is better or worse than another. The comparison is only possible at other levels, i.e. on

their ability to give an effective and rationally exact representation of constitutive relations.

With the aim of studying the critical and post-critical behavior of layered elastomeric bearings, the

present work considers two different beam models, both based on the Cosserat kinematical relation,
nonlinear and geometrically exact, suggested by Antman (1977, 1995). The first model, widely used in

Salerno and Lanzo (1997), Salerno (1992), Pignataro et al. (1982) and Lanzo (1994)), refers to the classical

linear elastic constitutive relationship. Instead, the second model refers to a more complex nonlinear elastic

constitutive relationship consistent with the framework of three-dimensional finite elasticity. The first beam

model is very similar to the one used by Haringx (1948), but enriched with the axial deformability, in

addition to the shear and flexural deformability; the second beam model corresponds exactly to the one

suggested by Marzano and coworkers (Marzano, 1994; D’Ambrosio et al., 1995; Castellano, 1995), how-

ever, whereas these cited papers are restricted to analysis of the critical behavior, the present paper aims to
cover the post-critical range as well.

With reference to the linear-elastic model, the work aims to demonstrate that, for the usual design of

bearings, the relative post-critical behavior does not affect the goal of determining its load-carrying

capability: this justifies, for the linear-elastic model, referring to the critical analysis only. Such conclusions
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cannot, however, be extended just then stand to the nonlinear-elastic model. The picture determined by the

post-critical behavior of the nonlinear-elastic model is, in fact, more diversified. It’s influence on the

determination of the load-carrying capability of the structural element is strongly related to the choice of its

constitutive parameters and, therefore, to the techniques of homogeneization used for bringing back the
real geometry of bearings to the homogeneous one of the examined models.

The work is organized as follows. After a brief description of Koiter’s perturbation strategy using the

formalism suggested by Budiansky (1974), the Cosserat beam model is synthetically described in its

kinematic and static aspects. Having completed the constitutive aspects of the linear-elastic model, its

critical and post-critical behavior is analyzed, obtaining in closed form the relative coefficients. Following

this, the same treatment is extended to the nonlinear-elastic model, where the critical load is obtained by

means of a numerical solution of a nonlinear algebraic equation, and the relative post-critical coefficients

are obtained in closed form. Finally, after reporting the experimental numerical results of the two model
behavior, there are some considerations and comments.
2. The Koiter strategy of analysis

For structures subjected to conservative loads linearly increasing according to a k parameter (p½k� ¼ kp̂),

characterized by an energy of deformation U½u� (where u represents the displacement field compatible with

the internal and external kinematical constraints of the structure) and a load potential p½k�u linear in u, the
equilibrium configurations are characterized by the stationariety of the total potential energy, expressed by

the following virtual work equation
P0du ¼ U0du� pdu 8du ð1Þ
where a prime indicates Fr�echet’s derivative with respect to the field u.

For varying loads, the solutions of the problem (1) can be represented by (u; k) values: such ‘‘points’’

describe in a suitable space one or more ‘‘curves’’ called equilibrium paths of the structure. We assume that

the natural equilibrium path, that is the path that the structure follows starting from its natural rest

configuration, is known and that it is regular in the load parameter uf ½k�. We call it fundamental path.

The intersection of uf ½k� with a second equilibrium path defines a phenomenon of bifurcation. We call

perfect the structures that exhibit bifurcation phenomena along their natural equilibrium path. The
bifurcation configuration (ub; kb) is defined by the critical condition
U00
b _vbdu ¼ 0 8du ð2Þ
that is the singularity tangent stiffness operator in the direction _vb (suitably normalized k_vbk ¼ 1Þ called
critical or primary buckling mode.

Starting from the bifurcation point, the branching path, also called post-critical, is reconstructed by

means of a Koiter asymptotic approach (Koiter, 1945) on the basis of the following representation with

reference to a suitable curvilinear abscissa n (also see Budiansky, 1974; Casciaro et al., 1991, 1992)
kd½n� ¼ kb þ _kbn þ 1

2
€kbn

2 ð3aÞ
ud½n� ¼ uf ½kd½n�� þ n _vb þ
1

2
n2€vb ð3bÞ
where €vb is the secondary buckling mode and ( _kb; €kb) represent, respectively, the slope and curvature (in the

bifurcation point) of the curve of the post-critical path.
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The scalar parameter _kb depends on the bifurcation configuration, the buckling mode and the tangent to

the fundamental path û ¼ o
ok u

f ½k�, being defined by the ratio
_kb ¼ � 1

2

U000
b _v

3
b

U000
b ûb _v2

b

ð4Þ
For particular symmetry conditions of the problem, such as in the present case
_kb ¼ 0
With this condition, the secondary buckling mode is defined by the solution of the problem
U00
b€vbduþ U000

b _v
2
bdu ¼ 0 8du ð5Þ
constrained by a suitable orthogonality condition ðh€vb;€vbi ¼ 0Þ; at the same time, the curvature scalar

parameter €kb is evaluated by means of the simple ratio of scalar quantities
€kb ¼ �U
0000

b _v4
b � 3U00

b€v
2
b

3U000
b û _v

2
b

ð6Þ
It can be shown that the choice of the abscissa n that describes the post-critical path defines both the

normalization condition of the primary buckling mode and its orthogonality condition with the secondary

mode
ðk _vbk ¼ h _vb; _vbi ¼ 1Þ ðh€vb;€vbi ¼ 0Þ
It can also be shown that, in presence of load or geometric imperfections that alter the ideal scheme of the

perfect structure, the relative equilibrium path is reconstructed with sufficient accuracy by preserving the

kinematic representation (3b) but opportunely redefining the k–n relationship according to
k þ l
n
¼ kb þ _kbn þ 1

2
€kbn

2 ð7Þ
where the effects of the imperfections are taken into account in a simple way through the scalar coefficient l
that, for the imperfections of load ~p, is evaluated by
l ¼ � ~p½k� _vb

U000
b û _v

2
b

ð8Þ
3. The Cosserat beam model

3.1. Kinematic relations

We refer to a Cosserat planar beam model, of generic section and length l, whose generic deformed

configuration (see Fig. 1)
x0 ¼ sþ u½s� þ z sin h½s�
y0 ¼ y

z0 ¼ w½s� þ z cos h½s�
ð9Þ
is defined by the position of the line of centroids in the plane ðx; zÞ
po½s� ¼ ðsþ u½s�Þiþ w½s�k



Fig. 1. Kinematics.
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and by the rigid rotation h½s� of the cross-section, with reference to an initial configuration with rectilinear

axis and sections orthogonal to it. Therefore, the kinematics of the model is described in terms of the

displacement scalar fields ðu½s�;w½s�; h½s�Þ.
The strain allowed by the kinematical model includes axial, shear and bending deformations. For finite

displacements, exact strain measures ðe½s�; c½s�; v½s�Þ are defined by the relations see (Salerno and Lanzo,

1997; Antman, 1977, 1995; Pignataro et al., 1982; Lanzo, 1994)
r;s ¼ ð1 þ eÞaþ cb; v ¼ h;s
where the unit vectors
a ¼ cos hi� sin hk; b ¼ sin hiþ cos hk
are, respectively, normal and tangent to the plane of the section in the deformed configuration. The

development of the above definitions bring to the following nonlinear strain–displacement relationship
1 þ e ¼ ð1 þ u;sÞ cos h � w;s sin h ð10aÞ

c ¼ ð1 þ u;sÞ sin h þ w;s cos h ð10bÞ

v ¼ h;s ð10cÞ
For the structural element under consideration, the kinematic boundary conditions are given instead by

(see Fig. 3)
for s ¼ 0 : u½0� ¼ w½0� ¼ h½0� ¼ 0k for s ¼ l : h½l� ¼ 0 ð11Þ
Fig. 2. Internal forces.



Fig. 3. Beam model.
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3.2. Static relations

Let (N ; T ;M) be force measures such that internal forces and couples of contact action are represented by

the vectors (see Fig. 2)
1 T

param
t ¼ Naþ Tb; m ¼ Mb
 a
In the absence of loads along the axis of the beam, the internal equilibrium conditions
t;s ¼ 0; m;s þ r;s 
 t ¼ 0
are expressed by the three scalar relationships
ðþN cos h þ T sin hÞ;s ¼ 0 ð12aÞ

ð�N sin h þ T cos hÞ;s ¼ 0 ð12bÞ

M;s � ð1 þ u;sÞð�N sin h þ T cos hÞ þ w;sðN cos h þ T sin hÞ ¼ 0 ð12cÞ

The equilibrium is completed by the natural boundary conditions. In particular, we consider for the

problem an axial compression load k applied on the top of the structural element (see Fig. 3), and then
N ½l� ¼ �k; T ½l� ¼ 0 ð13Þ

Duality can be seen among the characteristics of stress and strain introduced, in the sense that internal

virtual work assumes the following expression
Z
l
fNde þ Tdc þMdvgds
where ðde; dc; dvÞ are virtual variations of the beam strain parameters. It is therefore natural and rationally
correct to define the constitutive model for the beam through relationships in the quantities (N ; T ;M) and

ðe; c; vÞ.
In what follows, we will take into account hyperelastic material relations, for which a strain energy U½u�

exists, as a function only of the displacement fields of the structure, such that its first variation is identically

equal to the internal virtual work 1
U½u�0du �
Z
l
fNde þ Tdc þMdvgds ð14Þ
he complete expressions of the strain energy variations are reported in Appendix A, together with the expression of the strain

eters variations needed in the following developments of the analysis.
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4. The linear-elastic beam model

The first model of multilayered elastomeric bearing is completed in its constitutive representation

making use of the classical linear-elastic relationship of the beam theory, i.e.
N ¼ EAe; T ¼ GAc; M ¼ EJv ð15Þ
with EA, GA and EJ axial, shear and flexural stiffness moduli. For this structural model the strain energy is

measured by
U½u� ¼ 1

2

Z
l
fEAe2 þ GAc2 þ EJ ; v2gds
4.1. Buckling analysis (linear-elastic model)

For varying axial compression loads, the natural fundamental equilibrium path of the bearing is

characterized by deformed configurations still rectilinear defined through the following:
N f ½s� ¼ cost ¼ No ¼ �k

T f ½s� ¼ M f ½s� ¼ 0
k

ef ½s� ¼ uf ½s�;s ¼ cost ¼ eo

cf ½s� ¼ vf ½s� ¼ 0
k uf ½s� ¼ eos

wf ½s� ¼ hf ½s� ¼ 0
ð16Þ
together with the linear relation
N ¼ EAeo ð17Þ

Along the fundamental path, the critical condition of singularity of the tangent stiffness operator (2) is

expressed by
Z
l

_Ndu;s
n

þ _T
�

� No
_h
�
dw;s þ _T ð1

�
þ eoÞ � No _w;s

�
þ _hð1 þ eoÞ

��
dh þ _Mdh;s

o
ds ¼ 0 8ðdu; dw; dhÞ

ð18Þ

according to
_N ¼ ðN 0
o _vbÞ; _T ¼ ðT 0

o _vbÞ; _M ¼ ðM 0
o _vbÞ
Taking into account the boundary conditions (11), it can be demonstrated that such an integral relation is

equivalent to the following differential ones:
_N ¼ 0 k _T � No
_h ¼ 0 k _M;s þ No _w;s ¼ 0 ð19Þ
Because of the constitutive relations (15) and
_N ¼ EAðe0o _vbÞ ¼ EA _u;s

_T ¼ GAðc0o _vbÞ ¼ GA _w;s

�
þ _h 1

�
þ No

EA

��
_M ¼ EJðv0

o _vbÞ ¼ EJ _h;s

ð20Þ
being valid, the relations (19) are expressed by the differential equation system in the fields ( _u½s�; _w½s�; _h½s�)
_u;s ¼ 0 k _w;s ¼ � 1

�
þ No

EA
� No

GA

�
_h k EJ _h;ss � No 1

�
þ No

EA
� No

GA

�
_h ¼ 0
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The last equation, with the essential boundary conditions ð _h½0� ¼ _h½l� ¼ 0), admits the trivial solution
_h½s� ¼ 0 that agrees with the fundamental path. It can be shown that it also admits solutions in agreement

with the form
_h½s� ¼ C sin
nps
l

� �
; n ¼ f0; 1; 2; . . .g
for particular critical values Ncn of the internal normal load (and then for particular critical values

kcn ¼ �Ncn of the external load) that fulfill the condition
EJ
n2p2

l2
þ Ncn 1

�
þ Ncn

EA
� Ncn

GA

�
¼ 0
These critical values of the compression load correspond to bifurcation conditions along the fundamental

path. In particular, we are interested in the lower critical value kb: it can be shown that this can be obtained

for n ¼ 1, and then connected to the critical condition
p2

l2
EJ � kb 1

�
� kb

EA
þ kb

GA

�
¼ 0 ð21Þ
equivalent to an algebraic second degree equation in kb
k2
b

�
� 1

EA
þ 1

GA

�
þ kb �

p2

l2
EJ ¼ 0
As EA � GA, i.e. ð� 1
EA þ 1

GAÞ > 0, is the usual design of bearings, the last algebraic equation admits the

following real solution:
kb ¼
�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4p2 EJ

l2 � 1
EA þ 1

GA

	 
q
2 � 1

EA þ 1
GA

	 
 ð22Þ
which represents in closed form the critical compression load searched for. To this value the critical mode

defined by
_u;s ¼ 0 k _w;s ¼ � 1

�
� kb

EA
þ kb

GA

�
C sin

ps
l

� �
k _h ¼ C sin

ps
l

� �

is associated. Taking into account the essential boundary conditions ( _u½0� ¼ _w½0� ¼ 0) and making use of

the norm
k _vbk � _w½l� ¼ 1 ð23Þ

the primary critical mode is then expressed by the following displacement fields (see Fig. 4):
_u½s� ¼ 0 k _w½s� ¼ 1

2
� 1

2
cos

ps
l

� �
k _h½s� ¼ � p

2l
1

1 � kb

EA þ
kb

GA

	 
 sin
ps
l

� �
ð24Þ
4.1.1. Remarks on the critical behavior of the linear-elastic model

It is interesting to study the relationship (22) to deepen the dependence of the critical load kb on the
geometric and constitutive parameters of the model. It is possible to rewrite Eq. (22) in this way
kb ¼ 2kE

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4p2 � EJ

EAl2 þ EJ
GAl2

	 
q ð25Þ



Fig. 4. Buckling model.
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as kE ¼ p2 EJ
l2 (Euler’s critical load). This makes it clear that the bifurcation load depends linearly on the

normal elasticity modulus E and that axial and transversal rigidities influence the bifurcation load only

through the relative ratios with the bending rigidity EAl2

EJ and GAl2

EJ . In particular, at the limit condition
EAl2

EJ ¼ 1 (axially undeformable beam) the expression (25) is coherent with the expression of Haringx’s
critical load
kH ¼ 2kE

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4p2 EJ

GAl2

q ;
whereas only satisfying both the limit conditions (EAl
2

EJ ¼ 1, GAl2

EJ ¼ 1) (the elastical beam model, axially and

tangentially undeformable) the expression (25) coincides identically with Euler’s critical load kE.

It’s worth noting that, As D ¼ � EJ
EAl2 þ EJ

GAl2 > 0 is the usual design for bearings, it results that kb < kE.

Also it is worth observing that che critical load kb decreases for increasing values of the coefficient

D ¼ � EJ
EAl2 þ EJ

GAl2: as a consequence, kb increases for increasing values of the ratio GAl2

EJ and for decreasing

values of the ratio EAl2

EJ . From the last observation, it results that kb > kH. In conclusion, for the usual

bearings design the relation
kH < kb < kE
is valid.

4.2. Post-critical behavior (linear-elastic model)

Once the fundamental path uf ½k� and, from the resolution of the bifurcation problem, the load and the

primary mode of buckling ðkb; _vbÞ are known, the Koiter evaluation of the post-critical path (3) is com-

pleted by determining, in sequence, the post-critical slope _kb, the secondary buckling mode €vb and the post-

critical curvature €kb. Setting the lateral displacement on the top of the structural element as the curvilinear

abscissa of the asymptotic representation of the post-critical path (3).
n ¼ w½l�;
it can be demonstrated that it determines the preceding normalization condition (23) of the primary

buckling mode and the following orthogonality condition between primary and secondary buckling mode
_vb ? €vb () _w½l�€w½l� ¼ €w½l� ¼ 0 ð26Þ
4.2.1. The post-critical slope

The post-critical slope _kb is defined in (4) by means of the ratio of two scalar quantities computed by

(see Appendix A)
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U000
b _v

3
b ¼ 0

U000
b ûb _v2

b ¼ � 1

�
� 2

kb

EA
þ 2

kb

GA

�Z
l

_h2 ds
ð27Þ
As a result we have
_kb ¼ � 1

2

U000
b _v

3
b

U000
b ûb _v2

b

¼ 0
In conclusion and coherently with the symmetry of the problem, the post-critical path results in a zero value

of its initial slope (at the bifurcation configuration).

4.2.2. The secondary buckling mode

The problem (5) that determines the secondary buckling mode €vb � f€u½s�; €w½s�; €h½s�g is defined by the

tangent stiffness operator U00
bð�Þð�Þ and by the following known terms:
U000
b _v

2
bdu ¼

Z
l

EA 1

��
� 2

kb

EA
þ 2

kb

GA

�
_h2du;s



ds
The problem (5) is then expressed by
Z
l

€N
��

þ EA 1

�
� 2

kb

EA
þ 2

kb

GA

�
_h2

�
du;s þ €T

�
� Nb

€h
�
dw;s

þ €T ð1
�

þ ebÞ � Nb €w;s

�
þ €hð1 þ ebÞ

��
dh þ €Mdh;s



ds ¼ 0 8ðdu; dw; dhÞ
where
€N ¼ ðN 0
b€vbÞ ¼ EA€u;s; €T ¼ ðT 0

b€vbÞ ¼ GAð€w;s þ ð1 þ ebÞ€hÞ; €M ¼ ðM 0
b€vbÞ ¼ EJ€h;s
With developments similar to those carried out in the bifurcation problem and taking into account the

orthogonality condition (26), this problem admits the following solution in the components of the sec-

ondary buckling mode:
€u;s ¼ � 1

�
� 2

kb

EA
þ 2

kb

GA

�
_h2; €w½s� ¼ €h½s� ¼ 0
4.2.3. The post-critical curvature

Once the secondary buckling mode is known, the post-critical curvature parameter €kb is computed by the

ratio (6) with a denominator given by (27) and a numerator given by the following terms:
U
0000

b _v4
b ¼ 3EA 1

�
� 2

kb

EA
þ 2

kb

GA

�2 Z
l

_h4 dsþ kb 1

�
� 4

kb

EA
þ 4

kb

GA

�Z
l

_h4 ds

U00
b€v

2
b ¼

Z
l

€Nðe0b€vbÞ
n o

ds ¼ EA 1

�
� 2

kb

EA
þ 2

kb

GA

�2 Z
l

_h4 ds
From this we obtain
€kb ¼ �U
0000

b _v4
b � 3U00

b€v
2
b

3U000
b û _v

2
b

¼ kb

1 � 4 kb

EA þ 4 kb

GA

	 

1 � 2 kb

EA þ 2 kb

GA

	 
 p
4l

	 
2

1 � kb

EA þ
kb

GA

	 
2
ð28Þ



Fig. 5. Values
€kb

kb
vs. x ¼ � 1

EA þ 1
GA.
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It is a simple task to demonstrate that the post-critical curvature coefficient depends linearly on the normal

elasticity modulus.
4.2.4. Remarks on the post-critical behavior of the linear-elastic model

A measure of the influence of the post-critical behavior is given by the relationship between the initial

curvature of the post-critical path and the bifurcation load value
€kb

kb

� �
. For Eq. (28), this ratio is evaluated

by
2 Th
€kb

kb

¼ p
4l

� �2 1 þ 4p2 kb

kE
D

� �
1 þ 2p2 kb

kE
D

� �
1 þ p2 kb

kE
D

� �2
in terms of the coefficient D ¼ � EJ
EAl2 þ EJ

GAl2 and of the ratio kb

kE
between actual and Eulerian bifurcation load.

For positive range values of the coefficient D (the only interesting one from a technical point of view) and

for several values of kb

kE
< 1, its values are represented qualitatively in the graph of Fig. 5. It can be observed

that the post-critical coefficient
€kb

kb
always assumes positive values which are always less than p

4l

	 
2
, i.e. the

limit value of the coefficient relative to the elastical model (kb

kE
¼ 1). In particular, for increasing values of the

coefficient D the values of
€kb

kb
are rapidly decreasing and, in the cases of technical interest, practically became

€kb

kb
� 0. In conclusion, positive values of the ratio kb

€kb
have a stabilizing effect of the post-critical behavior on

the general limit behavior of the model. However, this effect is very limited because of the low value of this
ratio. This conclusion is also validated by the numerical results obtained from the examples reported

further on.
5. The nonlinear-elastic beam model

The new beam model is obtained for the same kinematical (9) and (10), and then static (12) and (13),

relationships, but enriching the constitutive relations to better take into account the nonlinear elastic

behavior of rubber materials. In particular we refer to isotropic, hyperelastic constitutive relations,

opportunely deduced in Marzano (1994), D’Ambrosio et al. (1995) from well-known Blatz and Ko

equations (Blatz and Ko, 1962), characterized by the following volume density of the strain energy 2
e case q ¼ 0 agrees exactly with the Blatz and Ko constitutive model.
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u½F� ¼ 1

2
l kFk2

�
� 3 þ 2

r
ððdetFÞ�r � 1Þ

�
þ 1

4
qðjFij2 � 1Þ2
where the tensor F is the gradient of the deformation (9) and ðl; r; qÞ are the constitutive coefficients of the

rubber. Recalling the definitions (10) we obtain
u½u;w; h� ¼ 1

2
l

�
� 1 þ ð1 þ e þ zvÞ2 þ c2 þ 2

r
ðð1 þ e þ zvÞ�r � 1Þ

�
þ 1

4
q ð1
h

þ e þ zvÞ2 þ c2 � 1
i2
The strain energy is then computed by
U½u;w; h� ¼
Z
l

Z
A

u½u;w; h�dA
� �

ds
On the basis of the identity
U0du ¼
Z
l

Z
A
ðu0duÞdA

� �
ds ¼

Z
l

Ndeð þ Tdc þ MdvÞds
we get the following representation of the constitutive relations for the equivalent beam model:
N ¼
Z
A

o

oe
u½e; c; v�dA ð29aÞ
T ¼
Z
A

o

oc
u½e; c; v�dA ð29bÞ
M ¼
Z
A

o

ov
u½e; c; v�dA ð29cÞ
Explicit expressions of these constitutive relations and other variational details are given in Appendix A.

5.1. Critical behavior (nonlinear-elastic model)

The structural model still exhibits the trivial fundamental path (16) where, however, because of the

constitutive equation (29a), the following nonlinear relation between the normal stress and axial shortening

parameter k ¼ 1 þ �o is valid
No ¼ lAðk � k�ð1þrÞÞ þ qAðkðk2 � 1ÞÞ ð30Þ
Here A stands for the area of the beam cross-section while, in the following pages:
J ¼def

Z
A
z2dA; J4 ¼

def

Z
A
z4 dA
(It is supposed that
R
A zdA ¼ 0 and

R
A z

3dA ¼ 0.)

The bifurcation condition (2) is still expressed by Eq. (18) and then by Eqs. (19). Because of the new

constitutive model, these now give the following nonlinear differential equation system in the fields

( _u½s�; _w½s�; _h½s�) (the critical mode):
_u;s ¼ 0 k _w;s ¼ � g½k�
b½k�

_h k Ja½k� _h;ss � No½k�
g½k�
b½k�

_h ¼ 0 ð31Þ
being set (see Appendix A for expressions of functions a½k�, b½k� and g½k�)
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No ¼ Akb½k� � Ag½k�
_N ¼ ðN 0

o _vbÞ ¼ Aa½k� _u;s
k

_T ¼ ðT 0
o _vbÞ ¼ Ab½k�ð _w;s þ k _hÞ

_M ¼ ðT 0
o _vbÞ ¼ Ja½k� _h;s

ð32Þ
Satisfying the boundary conditions and the normalization (23), the system (31) admits a solution in the

form
_u½s� ¼ 0 k _w½s� ¼ 1

2
� 1

2
cos

ps
l

� �
k _h½s� ¼ � p

2l
b½kb�
g½kb�

sin
ps
l

� �

in relation to the smaller kb value that realizes the condition
Ja½kb�
p2

l2
þ No½kb�

g½kb�
b½kb�

¼ 0 ð33Þ
and then in connection with the bifurcation load
kb ¼ �No½kb�

It is worth observing that, in contrast to the solution of problem (21), the solution of the bifurcation

problem (33) cannot be obtained in closed form. That solution, however, can be computed by means of

common procedures of numerical analysis. Also in this case, it can be demonstrated that the critical value,
for the same values of the constitutive coefficient r and of the ratio q=l, depends linearly on the elasticity

modulus l.

5.2. Post-critical behavior (nonlinear-elastic model)

5.2.1. The post-critical slope

As
U000
b _v

3
b ¼ 0
the value of the post-critical initial slope is given again by
_kb ¼ � 1

2

U000
b _v

3
b

U000
b ûb _v2

b

¼ 0
5.2.2. The secondary buckling mode

The known terms of the secondary buckling mode problem (5) are now given by
U000
b _v

2
bdu ¼

Z
l

A abkb

 (
þ ðbb � 2abÞ

Nb

Abb

þ 2qkb

N 2
b

A2b2
b

!
_h2du;s þ Jxb

_h2
;sdu;s

)
ds
with
Nb ¼ No½kb�; ab ¼ a½kb�; bb ¼ b½kb�; gb ¼ g½kb�; xb ¼ oa
ox

½kb�
The problem (5) is then expressed by
Z
l

€N

 (
þ A abkb

 
þ ðbb � 2abÞ

Nb

Abb

þ 2qkb

N 2
b

A2b2
b

!
_h2 þ Jxb

_h2
;s

!
du;s þ €T

�
� Nb

€h
�
dw;s

þ €T kb

�
� Nb €w;s

�
þ €hkb

��
dh þ €Mdh;s

)
ds ¼ 0; 8ðdu; dw; dhÞ
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where
€N ¼ ðN 0
b€vbÞ ¼ Aab€u;s; €T ¼ ðT 0

b€vbÞ ¼ Abbð€w;s þ kb
€hÞ; €M ¼ ðM 0

b€vbÞ ¼ Jab
€h;s
Taking into account the orthogonalization condition (26), the problem admits the following solution in the

components €vb � ð€u; €w; €hÞ of the secondary buckling mode
€u;s ¼ � kb

 
þ bb

ab

�
� 2

�
Nb

Abb

þ 2
qkb

ab

N 2
b

A2b2
b

!
_h2 � Jxb

Aab

_h2
;s; €w½s� ¼ €h½s� ¼ 0
5.2.3. The post-critical curvature

The developments (reported in Appendix A) of the several terms lead to the following expression for the

post-critical initial curvature coefficient
€kb ¼ �U
0000

b _v4
b � 3U00

b€v
2
b

3U000
b û _v

2
b

¼ 1

4

p
2l

bb

gb

� �2

A
C0 þ Nb

Abb
C1 þ

N2
b

A2b2
b

C2 þ
N3

b

A3b3
b

C3 þ
N4

b

A4b4
b

C4

� �
D0 þ Nb

Abb
D1 þ

N2
b

A2b2
b

D2
where the parameters ðC0;C1;C2;C3;C4;D0;D1;D2Þ are connected to the constitutive parameters of the

model and to the coefficient kb: their expression is given in Appendix A. It can also be demonstrated that,
for the same values of r and q=l, the post-critical curvature €kb depends linearly on the elasticity modulus l.
6. A condition of critical equivalence between models

It’s worth noting that the two beam models examined are quite different. In fact, going beyond the

different models of elastic isotropic material which the two models refer to (linear-elastic and nonlinear-
elastic), it’s sufficient to observe that the linear-elastic model is defined in the context of first order theory

(on the basis of the St. Venant hypothesis and by means of ‘ad hoc’ technical assumptions for the shear

deformability) and projected in a geometrically nonlinear context. The nonlinear-elastic model, instead, is

directly defined in a nonlinear geometrically exact context and coherently reduced to a nonlinear-elastic

beam on the basis of a precise kinematical constraint (of cross-section rigidity).

However, with the aim of comparing in quantitative terms their post-critical behavior, it is possible to

define the constitutive coefficients (EA;GA;EJ ) of the linear-elastic model by means of a condition of

equivalence, in terms of critical load, with the nonlinear model, i.e. starting from the resolution of the
critical problem of the nonlinear model and obtaining the following relations:
EAeq ¼ Nb

kb � 1
; GAeq ¼ A � bb; EJeq ¼ J � ab ð34Þ
from (17), (19), (20) and (32).
7. Numerical results

The aim of the numerical experimentation is to study, from a qualitative and quantitative point of view,

the influence, in terms of load-carrying capacity, of the post-critical behavior of the two beam models of

laminated bearings proposed. In this section some of the results obtained for ideal examples of homoge-
nized bearings are reported having
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• the same sectional geometry (circular and hollow, with external radius Rext ¼ 120 mm and internal radius

Rint ¼ 10 mm);

• several values of height l, and then several slenderness values sl ¼ l=
ffiffi
J
A

q
as reported in the following:

• several values of the constitutive coefficients (EA;GA;EJ ) of the linear model on the basis of

l (mm) 31 61 121 133 181 241 301

sl 0.515 1.013 2.009 2.209 3.006 4.003 4.999
Table 1

Linear-ela

(G ¼ 0:44

v

0.4545

0.4762

0.4950

0.5000
EA ¼ E � A; GA ¼ G � A; EJ ¼ E � J ; G ¼ E
2ð1 þ vÞ
• several values of the constitutive coefficients (l; r; q) of the nonlinear model and, then, of the constitutive

coefficients (EAeq;GAeq;EJeq) of the equivalent linear model.

In the following pages, imperfect structural elements will be obtained taking into account small addi-
tional imperfectional loads defined by a horizontal force ~p½k� ¼ T applied to the top of the elements. From

Eqs. (7), (8) and (23) and with the post-critical slope coefficient _kb being zero for the cases taken into

account, the k–n relationship is given in implicit form by
stic model: critical and post-critical values for varying values of the constitutive coefficient r and of the slenderness

07 MPa)

l (mm) kb (N) kH (N) €kb (MPa) 1
2

 €kb

kb

 l2

31 239702.740 (196377.662) 3.731762393 0.007480564

61 115047.662 (95276.151) 1.550904150 0.025080537

133 46086.895 (39134.634) 0.441072514 0.088464588

181 31014.407 (26751.477) 0.237507994 0.125441693

241 20941.582 (18392.180) 0.122536612 0.169926248

301 15142.905 (13516.232) 0.068599887 0.205218830

31 240716.458 (197903.284) 3.670534423 0.007326843

61 115607.287 (96048.934) 1.528870980 0.024604543

133 46378.632 (39483.359) 0.437059881 0.083348213

181 31238.838 (27003.416) 0.236095988 0.123800069

241 21114.699 (18576.310) 0.122242150 0.168128049

301 15281.813 (13658.881) 0.068643984 0.203484158

31 241605.049 (199223.465) 3.619327473 0.007198056

61 116096.044 (96717.684) 1.510390500 0.024204800

133 46632.142 (39785.203) 0.433668053 0.082251780

181 31433.540 (27221.533) 0.234894803 0.122407286

241 21264.732 (18735.776) 0.121987954 0.166594676

301 15402.161 (13782.468) 0.068679234 0.201997870

31 241839.063 (199568.634) 3.606200579 0.007165010

61 116224.499 (96892.537) 1.505645111 0.024102084

133 46698.582 (39864.134) 0.432793201 0.081969072

181 31484.520 (27278.576) 0.234583838 0.122047298

241 21303.993 (18777.488) 0.121921586 0.166197189

301 15433.648 (13814.803) 0.068688011 0.201611519



5748 A.D. Lanzo / International Journal of Solids and Structures 41 (2004) 5733–5757
k � T
nU000

b û_v
2
b

¼ kb þ
1

2
€kbn

2 ð35Þ
This relation is determined by the knowledge of the three scalar coefficients (kb; €kb;U
000
b û_v

2
b) only. Following

the perturbation approach, for given values of the horizontal load T , this equation defines, in the manifold

(3b), the equilibrium path of the imperfect structural elements, i.e. the values of the axial load k for varying

values of the horizontal displacement n in the top of the bearing.
7.1. Results of the linear-elastic model

The results obtained for the linear-elastic model in terms of critical and post-critical behavior are

summarized in Table 1. As can be observed, the critical value kb is obviously strongly affected by the

slenderness values, but much less by the coefficient values v. For comparison, Haringx’s critical values are

also reported in the table: as already observed, kb > kH is always obtained, with 10� 15% difference in

values for the range of cases tested.

The numerical results of Table 1 verify what has already been observed regarding the qualitative post-

critical behavior of the model. Low positive values of the post-critical curvature coefficient €kb indicate a

stabilizing effect, albeit small, on the general behavior of the structural model. In fact, for a transversal
post-buckling displacement on the top of the bearing equal to 100% of the relative height, the load
Fig. 6. Equilibrium paths of the linear-elastic model.
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increment along the post-buckling path (measured by the coefficient Dpc ¼ 1
2

 €kb

kb

 l2 reported in the table)

reaches the maximum value of 20% of the bifurcation load only for the more slender bearings (and then for

the relatively greater transversal displacements relatively). It is also worth noting that this post-critical

coefficient is substantially unaffected by the elastic constitutive parameters (G; v).
The curves of the equilibrium paths, typical of the observed behavior, are reconstructed in the diagrams

of Fig. 6. With reference to the perfect structural element (absence of imperfections), the path bifurcates

with a substantially flat post-buckling path. For several values of load imperfections, the curves of the

equilibrium paths are asymptotic to the two paths of the bifurcation phenomenon, and then express a load-

carrying capacity of the structural element practically by the value kb of the critical load.
7.2. Results of the nonlinear-elastic model

The results obtained for the nonlinear-elastic model in terms of critical and post-critical behavior are

reported in Tables 2 and 3. The critical load values are obviously strongly connected to the slenderness of

the bearings. In contrast to what observed for the linear-elastic model, the dependence of the critical value

on the constitutive coefficient r (increasing values for decreasing values of r) is greater. Instead the

dependence of the critical values on the ratio q=l, nevertheless with a variation up to 40% for low values of

r, is more limited.

The general view of the post-critical behavior of the nonlinear-elastic model appears quite variegated. As

summarized in the diagram of Fig. 7, the relative parameter Dpc ¼ 1
2

 €kb

kb

 l2 is quite variable in relation to

the coefficient r (however, this variability decreases for decreasing slenderness). From positive to negative

values, this post-critical parameter is strongly influenced by the ratio q=l. The case q=l ¼ 0, corresponding

exactly to Blatz and Ko’s rubber elasticity model, is relevant: negative values of the post-critical coefficient

Dpc can be noticed, that negatively affect the load-carrying capacity of the structural element. For increasing
Table 2

Nonlinear-elastic model: critical and post-critical values for varying values of the constitutive parameter r and of the ratio q=l (height

l ¼ 133 mm, l ¼ 0:4407 MPa)

r q=l kb kb (N) €kb (MPa) 1
2

 €kb

kb

 l2 ð1

2

 €kb

kb

 l2Þeq

10 0.0 0.731388622 603534.356 )10.769 )0.1578 (0.1040· 10�8)

0.1 0.734806532 573239.978 2.804 0.0433 (0.1210· 10�8)

0.5 0.749492629 460680.260 51.946 0.9973 (0.2091· 10�8)

0.8 0.761560921 386155.295 82.097 1.8804 (0.2382· 10�8)

1.0 0.770062881 341582.565 98.312 2.5456 (0.2495· 10�8)

20 0.0 0.828380048 1015901.349 )17.911 )0.1559 (0.8027· 10�10)

0.1 0.829685760 982802.838 4.104 0.0369 (0.2451· 10�10)

0.5 0.835163061 855791.572 87.849 0.9079 (0.3467· 10�10)

0.8 0.839545916 766586.664 145.284 1.6762 (0.3706· 10�9)

1.0 0.842600440 710216.716 180.516 2.2489 (0.3779· 10�9)

30 0.0 0.870786313 1426102.822 )25.053 )0.1554 (0.4135· 10�10)

0.1 0.871490920 1390763.578 5.492 0.0349 (0.8738· 10�10)

0.5 0.874415928 1253455.300 123.647 0.8725 (0.1134· 10�9)

0.8 0.876725439 1154969.526 207.398 1.5882 (0.1185· 10�9)

1.0 0.878321927 1091588.093 260.539 2.1110 (0.1198· 10�9)

100 0.0 0.948153131 4265747.695 )74.632 )0.1547 (0.1845· 10�11)

0.1 0.948249134 4222344.713 15.316 0.0321 (0.3180· 10�11)

0.5 0.948639577 4050372.194 371.516 0.8112 (0.3529· 10�11)

0.8 0.948939326 3923160.135 634.636 1.4307 (0.3577· 10�11)

1.0 0.949142540 3839218.903 807.988 1.8614 (0.3583· 10�11)



Table 3

Nonlinear-elastic model: critical and post-critical values for varying values of the constitutive coefficient r and of the slenderness

(q=l ¼ 0:8, l ¼ 0:4407 MPa)

r l (mm) kb kb (N) €kb (MPa) 1
2

 €kb

kb

 l2 ð1

2

 €kb

kb

 l2Þeq

10 31 0.589865885 6576186.377 41531.918 3.0346 (0.1941· 10�12)

61 0.665260632 1745448.125 2389.857 2.5472 (0.1029· 10�10)

121 0.749422096 463122.549 124.997 1.9758 (0.7118· 10�9)

181 0.801576171 214215.138 19.922 1.5234 (0.9629· 10�8)

241 0.838634154 124530.043 4.821 1.1242 (0.5128· 10�7)

301 0.866475189 82053.573 1.426 0.7876 (0.1797· 10�6)

20 31 0.733415674 13303819.850 63581.898 2.2964 (0.6916· 10�13)

61 0.781233631 3523052.456 3904.147 2.0617 (0.2180· 10�11)

121 0.832315918 922066.433 218.864 1.7376 (0.1416· 10�9)

181 0.863281732 420327.342 36.577 1.4254 (0.1765· 10�8)

241 0.885353369 240878.112 9.106 1.0978 (0.9600· 10�8)

301 0.902235495 156550.382 2.647 0.7661 (0.3494· 10�7)

30 31 0.799549831 20331848.780 86361.176 2.0410 (0.2125· 10�13)

61 0.834661526 5355413.665 5419.713 1.8828 (0.7923· 10�12)

121 0.871544613 1390980.420 311.242 1.6380 (0.5034· 10�10)

181 0.893698241 630380.363 52.942 1.3757 (0.6076· 10�9)

241 0.909485263 359424.734 13.353 1.0789 (0.3328· 10�8)

301 0.921625760 232514.618 3.881 0.7561 (0.1227· 10�7)

100 31 0.922148149 71065719.810 246029.875 1.6635 (0.5270· 10�15)

61 0.934517327 18489085.450 15926.483 1.6026 (0.2958· 10�13)

121 0.947181372 4734839.845 947.081 1.4643 (0.1824· 10�11)

181 0.954677942 2125739.828 165.370 1.2743 (0.2093· 10�10)

241 0.960012339 1203058.506 42.597 1.0282 (0.1159· 10�9)

301 0.964142825 773303.580 12.442 0.7288 (0.4360· 10�9)

Fig. 7. Nonlinear-elastic model: post-critical coefficient Dpc vs. slenderness and constitutive coefficients.
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Fig. 8. Equilibrium paths of the nonlinear-elastic model.
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values of the ratio q=l, the values of the post-critical coefficient go back to the positive range, attaining a

relevant stabilizing effect for q=l � 1.

The geometry of the element also affects the post-critical values. However, in a different way as to what

was observed for the linear-elastic model, the higher values of the coefficient Dpc are attained for the less

slender bearings.

For comparison, in Tables 2 and 3 the post-critical parameter ~Dpc ¼ ð1
2

 €kb

kb

 l2Þeq relative to the

equivalent linear beam model in the sense of (34) are also reported: although the post-critical behavior of

the nonlinear model is variable, the linear model is characterized by a post-critical behavior which is always

stable but to a limited extent.

Finally, in the diagrams of Fig. 8 the curves of the equilibrium path for two typical cases of the observed

behavior, stable (case q=l ¼ 0:8) and unstable (case q=l ¼ 0:0) are represented. For both cases the load-

carrying capacity of imperfect structural elements shows significant differences from the critical load value

of the perfect elements.
8. Conclusions

The paper has proposed and studied two different beam models for laminated elastomeric bearings. This

study has been mainly oriented towards the evaluation of the critical and post-critical behavior of these
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structural models in the framework of a Koiter perturbation approach. For the linear-elastic model, the

results of the analysis indicate that its post-critical behavior does not quantitatively affect the load-carrying

capacity of the bearings (proving, for this model, the idea that the stability analysis can be resolved by only

computing the critical load of the problem). On the contrary, the nonlinear-elastic beam model exhibits a
strongly variegated post-critical behavior that certainly affects the load-carrying capacity of the structural

element. Therefore, the stability analysis cannot be confined to the determination of the critical load but

needs an exact evaluation of the post-critical behavior.

However the question of the accuracy of both models in predicting the behavior of real laminated

elastomeric bearings is far from closed. In particular the problem of defining the constitutive coefficients

(EA;GA;EJ ) (l; q; r) on the basis of a homogeneization criterion that takes into account the real con-

structive geometry of laminated bearings is still open. In fact, the choice of that criterion is clearly essential

to obtain an exact evaluation of the load-carrying capacity of the structural elements: indeed it is more true
and delicate for the nonlinear-elastic model, where the criteria must take into account equivalent behavior

conditions not only confined to the critical load but also able to cover the post-critical range. This theme is

deferred to a future work.
Appendix A. Some kinematical relations
de ¼ e0du ¼ du;s cos h � dw;s sin h � dhc

dc ¼ c0du ¼ du;s sin h þ dw;s cos h þ dhð1 þ eÞ
dv ¼ v0du ¼ dh;s

e00 _udu ¼ �du;s _h sin h � dw;s
_h cos h � dhðc0 _uÞ

c00 _udu ¼ du;s _h cos h � dw;s
_h sin h þ dhðe0 _uÞ

v00 _udu ¼ 0

e000û _udu ¼ �du;s _hĥ cos h þ dw;s
_hĥ sin h � dhðc00û _uÞ

c000v̂ _vdu ¼ �du;s _hĥ sin h � dw;s
_hĥ cos h þ dhðe00û _uÞ

e
0000
~uû _udu ¼ du;s _hĥ~h sin h þ dw;s

_hĥ~h cos h � dhðc000~uû _uÞ
Along the fundamental path (e ¼ eo;w ¼ h ¼ 0; c ¼ v ¼ 0)
e0odu ¼ du;s

c0odu ¼ dw;s þ dhð1 þ eoÞ

e00o _udu ¼ �dw;s
_h � dh _w;s � dh _hð1 þ eoÞ

c00o _udu ¼ du;s _h þ dh _u;s

e000o û _udu ¼ �du;s _hĥ � dhðû;s _h þ ĥ _u;sÞ

c000o û _udu ¼ �ĥ _hdw;s � ŵ;s
_hdh � ĥ _w;sdh � ĥ _hdhð1 þ eoÞ

e
0000

o ~uû _udu ¼ dw;s
_hĥ~h � dhðc000o ~uû _uÞ



A.D. Lanzo / International Journal of Solids and Structures 41 (2004) 5733–5757 5753
In the bifurcation configuration ( _u;s ¼ €w;s ¼ €h ¼ 0)
ðe0b _vbÞ ¼ _u;s ¼ 0 ðc0b _vbÞ ¼ _w;s þ ð1 þ ebÞ _h
ðe0b€vbÞ ¼ €u;s ðc0b€vbÞ ¼ €w;s þ ð1 þ ebÞ€h ¼ 0

ðe00b _v2
bÞ ¼ �2 _w;s

_h � ð1 þ ebÞ _h2 ðc00b _v2
bÞ ¼ 2 _u;s _h ¼ 0

ðe000b _v
3
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bduÞ ¼ �2 _u;s _hdh � du;s _h

2 ¼ �du;s _h
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2 ¼ �û;s _h
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b _vbÞ ¼ _h;s
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bÞ ¼ �2€w;s
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b€vbÞ ¼ €h;s ¼ 0

ðe00bûb _vbÞ ¼ �ŵ;s
_h � _w;sĥ � ð1 þ ebÞĥ _h ¼ 0
Appendix B. Higher variation of the strain energy

Along the fundamental path (To ¼ Mo ¼ 0):Z
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o _udu ¼
l
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o _uÞðc0oduÞ þ ðM 0
o _uÞðv0

oduÞ þ Noðe00o _uduÞ
o

ds
n

U000
o û _udu ¼

Z
l

ðN 00
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oûÞðc00o _uduÞ þ ðM 00
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In the bifurcation configuration (e0b _vb ¼ c00b _v
2
b ¼ e000b _v

3
b ¼ c0b€vb ¼ v0

b€vb ¼ e00b€v
2
b ¼ 0)
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Appendix C. The nonlinear-elastic model case

C.1. Constitutive relations

Set k ¼ 1 þ e and using the following functions:
a½x� ¼ l 1
�

þ ð1 þ rÞx�ð2þrÞ�þ q½3x2 � 1�
b½x� ¼ l þ qðx2 � 1Þ
g½x� ¼ lx�ð1þrÞ
the nonlinear elastic constitutive model is expressed by
N ¼
Z
A

o

oe
u½e; c; v�dA ¼

Z
A

ðkf þ zvÞb½k þ zv� � g½k þ zv�gdAþ Aqc2k

T ¼
Z
A

o

oc
u½e; c; v�dA ¼

Z
A

cb½kf þ zv�gdAþ Aqc3

M ¼
Z
A

o

ov
u½e; c; v�dA ¼

Z
A

zðkf þ zvÞb½k þ zv� � zg½k þ zv�gdAþ Jqc2v
Along the fundamental path (c ¼ v ¼ 0)
No ¼ Akb½k� � Ag½k�; To ¼ 0; Mo ¼ 0
C.2. First variation of the constitutive relations along the fundamental path
_No ¼ N 0
o _u ¼ Aa½k�ðe0o _uÞ ¼ Aa½k� _u;s

_To ¼ T 0
o _u ¼ Ab½k�ðc0o _uÞ ¼ Ab½k� _w;s þ Ag½k� _h þ No

_h

_Mo ¼ M 0
o _u ¼ Ja½k�ðv0

o _uÞ ¼ Ja½k� _h;s
C.3. Some quantities in the bifurcation configuration

Set ab ¼ a½kb�, bb ¼ b½kb�, gb ¼ g½kb�, xb ¼ oa
ox

½kb� sb ¼ o2a
ox2

½kb�
C.3.1. Strain
ðc0b _vbÞ ¼ _w;s þ kb
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�
� gb

bb
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�
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�
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�
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� 4
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�
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Nb

Abb

�
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C.3.2. Tension
ðN 0
b _vbÞ ¼ _N ¼ Aab _u;s ¼ 0

ðN 0
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b û _vbÞ ¼ Jxb ðe0ûbÞ _h;s
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C.3.3. Energy
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C.3.4. Post-critical curvature expression
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